BangorDIVERSE Bibliography

Webb, B., Robinson, D.A., Marshall, M.R., Ford, H., Pagellssa, T., Healey, J.R. & Smith, A.R. (2022). Variation in root morphology amongst tree species influences soil hydraulic conductivity and microporosity. Geoderma 425: 116057. [Available online: https://doi.org/10.1016/j.geoderma.2022.116057]

Cesarz, S., Craven, D., Auge, H., Bruelheide, H., Castagneyrol, B., Gutknecht, J., Hector, A., Jactel, H., Koricheva, J., Messier, C., Muys, B., O'Brien, M. J., Paquette, A., Ponette, Q., Potvin, C., Reich, P., Scherer-Lorenzen, M., Smith, A., Verheyen, K. & Eisenhauer, N. (2022) Tree diversity effects on soil microbial biomass and respiration are context dependent across forest diversity experiments. Global Ecology and Biogeography 31 (5): 872-885. [Available online: https://doi.org/10.1111/geb.13461

Kendall, N., Smith, J., Whistance, L., Stergiadis, S., Stoate, C., Chesshire, H. & Smith, A. (2021) Trace element composition of tree fodder and potential nutritional use for livestock. Livestock Science 250: 104560. [Available online: https://doi.org/10.1016/j.livsci.2021.104560

Webb, B. (2021). PhD Thesis: Investigating the impact of trees and hedgerows on landscape hydrology. Bangor University. [Available online: https://research.bangor.ac.uk/portal/files/38647706/Bid_Webb_PhD_thesis_2021_final.pdf

Ahmed, I., Smith, A. & Godbold, D. (2019) Polyculture affects biomass production of component species but not total standing biomass and soil carbon stocks in a temperate forest plantation. Annals of Forest Science 76: 91. [Available online: https://doi.org/10.1007/s13595-019-0875-2

Kendall, N., Smith, J., Whistance, L., Stergiadis, S., Stoate, C., Chesshire, H. & Smith, A. (2019) Tree leaves as supplementary feed for ruminant livestock. Woodland Trust Research Briefing, The Woodland Trust. [Available online: https://www.woodlandtrust.org.uk/media/46509/tree-leaves-for-livestock.pdf

Djukic, I., Kepfer-Rojas, S., Kappel Schmidt, I., Steenberg Larsen, K., Beier, C., Berg, B. & Verheyen, K. (2018) Early stage litter decomposition across biomes. Science of the Total Environment 628-629: 1369-1394. [Available online: https://doi.org/10.1016/j.scitotenv.2018.01.012

Jones, D. L., Hill, P., Smith, A., Farrell, M., Ge, T. & Murphy, D. V. (2018) Role of substrate supply on microbial carbon use efficiency and its role in interpreting soil microbial community-level physiological profiles (CLPP) Soil Biology and Biochemistry 123: 1-6. [Available online: https://doi.org/10.1016/j.soilbio.2018.04.014

Gunina, A., Smith, A., Jones, D. & Kuzyakov, Y. (2017) Microbial uptake and utlization of low molecular weight organic substrates in soil depend on carbon oxidation state. Biogeochemistry 133: 89-100. [Available online: https://doi.org/10.1007/s10533-017-0313-1

Gunina, A., Smith, A., Godbold, D., Jones, D. & Kuzyakov, Y. (2017) Response of soil microbial community to afforestation with pure and mixed species. Plant and Soil 412: 357-368. [Available online: https://doi.org/10.1007/s11104-016-3073-0

Peters, T. (2017a) Poster: Investigating the transfer of carbon between trees via common mycorrhizal networks. Bangor University.

Peters, T. (2017b) Presentation: Understanding the role of plant-microbe symbiosis in the cycling of carbon (C) in temperate forest ecosystems. Bangor University.

Peters, T. (2017c) Investigating the transfer of carbon between trees via common mycorrhizal networks [online]. Accessed: 16 January 2017 Lancaster University Envision, Nicola O'Byrne. Available from: http://wp.lancs.ac.uk/envision/2017/investigating-the-transfer-of-carbon-between-trees-via-common-mycorrhizal-networks/

Addo-Danso, S. D., Prescott, C. E. & Smith, A. R. (2015) Methods for estimating root biomass and production in forest and woodland ecosystem carbon studies: A review. Forest Ecology and Management 359: 332-351. [Available online: https://doi.org/10.1016/j.foreco.2015.08.015]

Ahmed, I. U., Smith, A. R., Jones, D. L. & Godbold, D. L. (2015) Tree species identity influences the vertical distribution of labile and recalcitrant carbon in a temperate deciduous forest soil. Forest Ecology and Management 359: 352-360. [Available online: https://doi.org/10.1016/j.foreco.2015.07.018

Godbold, D. L., Vasutova, M., Wilkinson, A., Edwards-Jonasova, M., Bambrick, M., Smith, A., Pavelka, M. & Cudlin, P. (2015). Elevated Atmospheric CO₂ Affects Ectomycorrhizal Species Abundance and Increases Sporocarp Production under Field Conditions. Forests 6(4): 1256-1273. [Available online: https://doi.org/10.3390/f6041256

Verheyen, K., Vanhellemont, M., Auge, H., Baeten, L., Baraloto, C., Barsoum, N., Bilodeau-Gauthier, S., Bruelheide, H., Castagneyrol, B., Godbold, D., Haase, J., Hector, A., Jactel, H., Koricheva, J., Loreau, M., Mereu, S., Messier, C., Muys, B., Nolet, P., Paquette, A., Parker, J., Perring, M., Ponette, Q., Potvin, C., Reich, P., Smith, A. R., Weih, M. & Scherer-Lorenzen, M. (2015) Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio 45(1): 29-41. [Available online: https://doi.org/10.1007/s13280-015-0685-1]

Godbold, D., Tullus, A., Kupper, P., Sober, J., Ostonen, I., Godbold, J. A., Lukac, M., Ahmed, I. U. & Smith, A. R. (2014) Elevated atmospheric CO₂ and humidity delay leaf fall in Betula pendula, but not in Alnus glutinosa or Populus tremula x tremuloides. Annals of Forest Science 71(8): 831-842. [Available online: https://doi.org/10.1007/s13595-014-0382-4]

Scullion, J., Smith, A. R., Gwynn-Jones, D., Jones, D. L. & Godbold, D. L. (2014) Deciduous woodland exposed to elevated atmospheric CO₂ has species-specific impacts on anecic earthworms. Applied Soil Ecology 80: 84-92. [Available online:  https://doi.org/10.1016/j.apsoil.2014.03.016

Smith, A. R., Lukac, M., Bambrick, M., Miglietta, F., & Godbold, D. L. (2013a). Tree species diversity interacts with elevated CO₂ to induce a greater root system response. Global Change Biology 19(1): 217-228. [Available online: https://doi.org/10.1111/gcb.12039]

Smith, A. R., Lukac, M., Hood, R., Healey, J. R. & Miglietta, F. G., & Godbold, D.L. (2013b) Elevated CO₂ enrichment induces a differential biomass response in a mixed species temperate forest plantation. New Phytologist 198(1): 156-168. [Available online: https://doi.org/10.1111/nph.12136]